データサイエンティストは消える?仕事がなくなるというのは本当?
データサイエンティストという職業をご存じでしょうか。スマホを手に生活をするスタイルに移行したことで、膨大なデータ(ビッグデータ)が日々生まれています。これらのデータを企業の課題解決に活かすことが、データサイエンティストの仕事と言えます。そのため、ビジネスとITどちらの世界にも精通することが求められます。 企業側の需要も高まり、高い年収も見込まれるようになりました。そのため、データサイエンティストを目指す学生・ビジネスマンが増える傾向にあります。 一方で、データを扱うという業務から「将来的にAIに取って代わられて、データサイエンティストは消えるのではないか?」という議論も生まれています。 その観点から、データサイエンティストの仕事内容、将来性、重要性、また最新のAIの動向も含めて紹介していきます。

-
データサイエンティストとは?
データサイエンティストとは、日々蓄積される個人・企業の膨大なデータを活用し、新しい価値、課題解決までを提供できる人材のことを指します。
膨大なデータは、大多数の人々が常にスマホを片手に行動するようになったことで生まれたものです。今こうしている瞬間にも、誰かが何かを検索、SNSに投稿しています。こうした大量の情報が、蓄積され続けています。
この膨大なデータを「企業活動に活かしたい」と企業側が強く要望したとしても、現状そのスキルを持ち合わせている人材は不足しています。データサイエンティストの需要が高まっている業界は多岐に渡っています。一見ITとは縁がないように思える小売業界・サービス業界なども、セールのタイミングや食材のロスなど、解決すべき問題は多くあります。
企業はこの流れを受けて、データサイエンティストの獲得・育成に力を入れようとしていますが、そこに明確な定義はありません。対応領域も広いことから、問題も生まれています。
その課題解消のために設立された一般社団法人に「データサイエンティスト協会」があります。
企業が期待するデータサイエンティストの役割と、人材が保持するスキルのミスマッチにより、職場において人材の経験・能力が活かせない状況を打開すべく、設立された協会です。
このように膨大なデータを扱う新たな職業「データサイエンティスト」の在り方については、企業・人材ともに試行錯誤を繰り返している最中であると言えるでしょう。 -
データサイエンティストの具体的な仕事内容
データサイエンティストの仕事は、データの収集・分析・加工、レポート作成、データから新たに見出された知見を業務へ組み込むことがメインとなります。
企業によって異なる場合もありますが、一般的にまず顧客へ課題のヒアリングを行い、費用対効果などを鑑みながら、着手する優先順位を決定します。その後、課題を明らかにし、その解決方法を膨大なデータの中から、規則性などの特性を取っ掛かりとして模索します。 -
データサイエンティストとデータアナリストの違い
データサイエンティストとよく似た言葉に、データアナリストという言葉があります。データアナリストは「データを分析・収集」に特化した職種です。
そこに統計学・企業の課題解決などのコンサル的視点を追加した職種がデータサイエンティストです。そのため、データアナリストよりもデータサイエンティストの方が、より上位の職種であると言うことができます。 -
データサイエンティストは消える?その理由とは
データサイエンティストの必要性が論じられる一方で、将来AI (Artificial Intelligence:人工知能)にデータサイエンティストの仕事が取って代わられるのではないか、という疑問も出ています。
現在AIはディープラーニングという手法から、目覚ましい勢いで精度を上げています。
MatrixFlowというサービスを例にとって紹介します。
MatrixFlowは、データ分析・機械学習の知識がない人物であっても、精度の高いAIを構築できるサービスです。
AIアルゴリズム、それに付随する自動化されたパラメータなどによって、プログラミングは一切不要となっており、マウス操作のみでデータの分析からデータ活用までが可能となるUXとなっています。
そのため、データサイエンティストでなくても、簡単に膨大なデータの活用が可能です。
データの前処理、パラメータチューニング、アルゴリズムの選定などの煩雑な作業は、AIによって自動化されます。データサイエンティストの作業の部分は、こうして自動化できてしまいます。
では、それによって「データサイエンティストは消える」と言い切ることができるのでしょうか。
答えは「否」です。
データサイエンティストの一部の作業はAIに置き換わるかもしれませんが、データ活用という「主体的に企業に働きかけて改善を促す」ことは、人でないとできないことです。
また「どのようにAIを組み込んでいくべきか」「ビジネスとしてAIをどう活用していくか」というビジネス的観点からAIを使いこなすことも求められます。
それこそデータサイエンティストの課題の発見力にかかっていると言えるでしょう。
そのため、よりコンサル的な視点と「データを読めて、問題がどこにあるのかをきちんと把握できる」ことが、データサイエンティストのスキルとして求められます。反対に、モデル設計だけで問題設定できないデータサイエンティスト、分析・収集の作業に特化したデータアナリストの需要は、将来的に落ちていくでしょう。
-
データサイエンティストを目指す方法
データサイエンティストの養成体制が整っていない現在、データサイエンティストを目指すにはどんな方法があるのでしょうか。具体的に紹介します。
日本では、2012年以降からデータサイエンス学部を設立する大学が現れています。修士・博士号が取得できる大学院も増加傾向にあります。
冒頭で紹介した一般社団法人「データサイエンティスト協会」では、個人が情報収集・講座の受講・受験ができるよう「コミュニティ形成」「人材の定義・育成・評価」「シンポジウム」を通して、働きかけを行っています。
そういった入口から、データサイエンティストを目指すこともできるでしょう。データサイエンティストの前職は、統計学者・ITエンジニア・ビジネスマン出身が多い傾向にあります。
データ活用を行う観点から、データサイエンティストになるにあたっては、数字に強い統計学者・ITエンジニアが有利であると言えるでしょう。
知識の面だけ見ると、文系学部出身のビジネスマンが、統計学とともにIT知識やスキルを身につけるのは高いハードルがあると言えるからです。しかし、今後のAI活用などの傾向を見ると、どちらかというと既存ビジネスの課題・問題点を深く理解していることが求められます。
その点では、ビジネスマンに利があると言えそうです。
その視点が欠如していると、データを見ても「どこから手を付けて良いのかが分らない」という状況になりがちだからです。ITエンジニアがデータサイエンティストを目指す場合には、統計学を学ぶとともに、マーケティング・ビジネススキルを高める必要があります。
特にデータをどう活用すれば費用対効果がでるのか、意識・把握をしながら勉強すると、効果が出やすいと言えます。近年ではITエンジニアもシステムを構築することとは別に、その操作性であるUI(ユーザーインターフェース)とUX(ユーザーエクスピアリエンス)の考え方が重要だと言われるようになりました。
システムを使う人々の「使いやすさ」「使いづらさ」を課題として意識することが、ビジネス的視点を磨くことに通じます。
サイトのスクロール・クリック・滞在時間を可視化するツールの活用も進んでいます。「データサイエンティスト的視点」を磨く機会は、ITエンジニアの業務内にも多く含まれていると言えるでしょう。 -
データサイエンティストは消えるのか?まとめ
データサイエンティストの職業の概要、目指し方、AIとの差別化などについて紹介しました。
データサイエンティストはスマホの普及や技術の発展により、溢れるデータを企業の課題解決に活用する職業です。データサイエンティストは、データ分析・収集を仕事とするデータアナリストの上位的職業と言うことができます。
データサイエンティストになるには、大学で学ぶほか、資格を取得するなどの方法があります。
データ活用という視点から、統計学者・ITエンジニアなど、理系の素養が有利に働くと言えるでしょう。しかし、現在ではMatrixFlowというプログラミング不要・マウス操作からデータ分析ができる便利なAIサービスの活用が企業の現場で進んでいます。
こうしたAIの精度アップなどから、技術面よりも、今はむしろ企業の問題解決をするためのビジネスへの深い洞察、また「コンサルティング」的視点が、データサイエンティストに求められると言えるでしょう。
AIを活用することで、データサイエンティストはよりビジネス分野に特化して、問題解決に集中することが可能となります。
-
ビジネスのためのAI活用プラットフォームMatrixFlowについての詳細はこちら
MatrixFlowの製品情報ページ -
AI活用・導入の実現方法についてのご質問ご相談はこちら
お問い合わせ
関連した事例
-
不動産業におけるAI技術:AI活用領域と、事例をご紹介
不動産業界は他の業界に比べて、AIの進出が遅いといわれているため、今のうちに導入できれば多くのメリットを享受できるかもしれません。そこで本記事では不動産業界におけるAIの活用領域や、AI導入のメリット・デメリットを解説します。
-
効率化できる在庫管理の考え方と、AIを活用した最先端の在庫管理
製造業や小売業など、商品を扱う企業において重要なのが「在庫管理」です。適切な在庫管理ができていないと商品の需要変化に対応できず、売上機会の損失にもつながりかねません。そうはいっても、今さら管理方法を変えるのは遅すぎるかも...と思われる方もいるでしょう。在庫の管理方法を改善するのに遅すぎることはありません。今現在うまく在庫管理ができていない場合も、コツや事例を学べばいつからでも改善可能です。本記事では、在庫管理を効率化するための考え方について解説していきます。
-
建設・土木・ゼネコンにおけるAI技術:AI活用領域と、事例6選をご紹介
機械学習やディープラーニングの技術進化で、AIの活用・導入が一般的になりつつあるなか、AIとの親和性から、高いレベルで導入が進んでいる業種と、そうでない業種もあります。建設業界ではゼネコンをはじめ、さかんにAI投資が進められており、AIによる業務改善や品質向上など、建設現場へのプラスの効果が期待されています。 今回は、建設業界ならではの課題や今後の動向、実際の活用事例についてご紹介していきます。
-
生産管理と品質管理の違いとは?AIを活用した最先端の事例もご紹介
生産管理とはモノづくりの現場で行われる受注から納品までを含む業務のことです。一言で生産管理といっても、生産計画、受注管理、発注管理、在庫管理、製造管理、外注管理、進捗管理、品質管理までの工程が含まれます。 生産管理は三つの要素である「品質」「原価」「納期」が重要です。なぜなら、高い品質の商品を、できるだけ原価を安くし、短期間で作ることが企業の利益に深く結びついているからです。 この記事では生産管理と、その一工程である品質管理の関係性を整理しながら、AIを活用した事例についても紹介します。
-
面白いAI・人工知能の使われ方をまとめました
AI技術は日々刻々と進化しています。これに伴い需要を予測して食品ロスを減らすAIや、クレジットカードの不正を検知するAIなど最近は、さまざまなAIが登場し始めています。 そこで本記事では、AI活用事例の中でも一風変わった面白い事例を8つ紹介します。本記事をAI活用のアイデアの参考にしてみてください。
-
AIで在庫管理を最適化する、需要予測システムについて徹底解説
需要予測の精度を上げるには、膨大な情報のなかから関連データを収集・分析せねばなりません。この作業に最適なのがAIによる機械学習システムで、収益を最大化させるために必要な売上予測、在庫管理のサポートにも役立ちます。在庫管理に有益な需要予測システムのメリット、導入の注意点とはどういったものでしょうか。
-
工場の生産管理におけるAIの活用法とは?
時間とコストを削減したり、不良品の発生を防いだりする際に役立つのが生産管理システム。最近ではこのシステムを利用して工場の生産管理をAI化する企業が増えています。そこで本記事では、生産管理における AI の活用方法と題して、生産管理システムの機能やメリットを紹介します。
-
HRのDXを実現するための、AIによる退職予測のやり方・実例を紹介
ヒト・モノ・カネという言葉に代表されるように、企業にとって人は最重要な資源です。 組織は人で成り立っている以上、働く仲間が重要であることはいうまでもありません。 加えて、今後日本の人口減少は間違いなく加速するともいわれています。 つまり、企業にとってこれまで以上に優秀な人材の確保が重要になるということです。 優秀な人材確保にあたり、採用の強化と同時に重要なのが退職防止です。 退職は仕方がないと思われるかもしれませんが、もしも事前に退職しそうな人がわかるとしたらどうでしょうか。 実は、AIを活用すれば退職しそうな人を発見し、事前にフォローすることができるのです。 どのようにしてAIで退職を予測するのか、退職予測をするメリットを解説していきます。
-
AIを活用した採用予測 - 実例・方法をご紹介!
「苦労して採用した人が1ヶ月で辞めてしまった」 「求めているスキルと実際の働きぶりに差があった」 こうした悩みを持たない採用担当者は、いないといっても過言ではありません。 要件にマッチした人材の採用は、どの会社においても重要課題です。 採用のマッチング率向上への期待から、人材採用にAIを活用する動きが見られています。 AIを活用することで要件に合った人材採用ができるだけでなく、採用工数を大幅に削減できます。 どのように採用領域でAIを活用するのか、具体的な事例と共に解説していきます。
-
AIを活用した生産性向上の方法と実例をご紹介
AIを活用することで、労働力不足の解消や、働き方改革の推進が可能となり、生産性を向上できることをご存知ですか。AIの導入で成功するためには、なぜAIを使うのか、実際にどんなデータを用いれば課題が解決できるのかを明確にすることが大切です。この記事では、ビジネスの現場で、AI活用が進んでいる背景やAI技術を活用するメリット、活用事例について解説します。また、AIを導入する際のポイントも紹介しますので、ぜひ参考にしてください。 目次 AI導入が広がる理由とは? AI導入による、生産性向上事例9選 MatrixFlowを活用したAI導入 AIを活用した生産性向上の方法と実例:まとめ
-
MESとは?生産管理のDXに欠かせない、MES・AIを導入する8つのメリット
従来の「ものづくり」は、一般的に「売れるモノ」の見込みを立てて、大量生産を行っていました。しかし、近年はニーズの多様化により製品のライフサイクルは短期化しており、少量多品種生産へとトレンドが移行しています。 つまり工場の設備は同じままで、多種多様な製品を生産しなければならない必要性に迫られています。そのためにも、生産管理のDX化は必要と言えるでしょう。そこで注目を集めている「MES」の導入について説明します。
-
AIを活用した製造管理とは? 製造業のDX推進の方法と事例紹介
製造業において、製造管理にはどのような役割があり、なぜ重要なのでしょうか?生産管理と同義に捉えられることが多いですが、管理の目的や範囲にはそれぞれ違いがあります。製造管理の役割や意義を的確に把握したうえで、業務にあたることが大切です。 今回は、生産管理とも比較しながら製造管理の役割を明らかにしたうえで、その必要性やメリットを解説します。さらに、現代の製造業において需要が高まっているAI活用についても、製造管理の現場にもたらす効果や導入事例を紹介するので、ぜひ参考にしてみてください。
-
アパレルの生産管理におけるAIの活用方法 - 需要予測・検査・検品
アパレル業界における生産管理には効率化が求められます。生産量や販売時期の予測から始まり、納品までの一連の流れには多くの工程が存在するため、管理が大変です。 そこで、現状の課題から、アパレル業界における生産管理の基礎知識を合わせて解説します。どうすればアパレル向けの生産管理システムを効率化できるのかも紹介します。
-
AI導入の失敗例と、成功のポイントとは?
AI導入の失敗はよくあること。「AIはすごいらしい」という時期は過ぎ、AIを導入する企業は確実に増加しています。日々の生活でもAIに遭遇することが増え、AI導入の検討段階に入ったという企業もあるでしょう。 今回は、AI導入の悪い事例を具体的に紹介します。失敗の原因を知り、自社の取り組みの際の参考にしてみてください。
-
小売業界におけるAI需要予測の実例や、進め方、ツールをご紹介
小売業界で、AIの活用が進んでいることはご存知でしょうか。 これまで人の管理に依存していた、在庫や発注管理をAIが代わりに担うようになってきています。 AIを活用することで、担当者の主観に頼らずデータを分析でき、より確度の高い予測ができるといったメリットがあります。 AIを使った商品の需要予測にはどのようなメリットがあるのか、具体的な事例を踏まえてご紹介していきます。
-
AI・機械学習による需要予測のメリットは?高い予測精度を実現する方法を解説
昨今、多くの企業で『需要予測』が注目されています。目まぐるしく変わる社会の変化に合わせて、無駄なく製品の提供するには需要予測が欠かせません。 需要予測の目的は、「消費者が製品を必要とするタイミングや量を予測し、適切に供給する」ことにあります。 精度の高い需要予測を実現することで、人・物・コストの流れを最適化することができ、企業によっては数億円のインパクトになることもあるでしょう。 これまで、需要予測はベテラン従業員のKDD(*1)に頼る傾向がありました。近年では「AI」「機械学習」などを活用した新しい手法も身近になりました。 本記事で『需要予測』について、そのメリットや最新のAI・機械学習を活用方法について解説していきます。 (*1) KKDとは日本語の「経験」(KEIKEN)、「勘」(KAN)、「度胸」(DOKYOU)の頭文字を取ってできた言葉で、製造業を中心に職人の技として尊重されてきた手法です。
-
AIによる需要予測に必要なデータの種類とは?集め方についても紹介
人々がスマホを片手に生活するようになり、SNSへの投稿が活発になるなどして、企業は様々なデータを取得できるようになりました。 そうしたデータを需要予測をはじめとしたビジネスシーンに活用しようという動きが強まっています。 需要予測とは、市場において「会社の商品やサービスがどれくらい売れるか」「在庫がどれくらい必要になるのか」などを、予測することです。 この記事では、その需要予測を行うにあたり、どのようなデータが必要となるのかについて説明します。 また膨大な量となるビッグデータを扱うに当たって、欠かせないAIについての活用についても触れていきます。
-
データサイエンティストには簡単になれるのか?今後求められる視点を解説
近年注目されているデータサイエンティストという職種。そもそもデータサイエンティストとはビッグデータから必要な情報を抽出して、企業の問題解決をしていく職業です。本記事ではデータサイエンティストになるための方法や将来性、今後求められる視点を中心に紹介します。
-
生産計画をエクセルで行う場合の、メリットやデメリットを解説
生産計画を策定する際には、原材料調達から出荷までを円滑に行うため、全体を見渡した設計が必要になります。生産計画に落ち度があれば、原価アップや品質の悪化、納期遅れなどにつながるため、会社の業績を左右する重要な役割です。 中小規模の製造業であれば、エクセルで生産計画を作成しているケースは多いでしょう。エクセルは生産計画以外でも業務に使用する頻度が高く、多くのビジネスパーソンにとって使い慣れたツールです。 エクセルの機能を使いこなせれば、生産計画を作成・管理する効率も格段に向上させることが可能です。しかし、エクセルで生産管理を行うことにデメリットはないのでしょうか。 本記事では、生産計画をエクセルで作成・管理することのメリット・デメリットを徹底解説します。また、エクセル以外の専用ツールを導入する価値についても紹介するので、ぜひ参考にしてみてください。
-
AIの来客予測への活用方法とは?実例とともに解説!
来客予測を正確に行うことは、店舗運営において非常に大事な要素です。しかし、これまでのように人の力で行う来客予測では複雑かつ膨大なデータを正しく処理することが難しく、時間と手間がかかる割に成果につながりにくいという課題がありました。 AIによる来客予測を行うことでそのような課題を解決できるとともに、顧客ニーズの多様化やグローバル化、コロナ禍の影響などにも迅速に対応することが可能になります。 本記事では、このようなAIを活用した来客予測のメリットや方法、具体的な事例などを紹介します。
-
製造業におけるDXとは?AIを使いこなしDXを実現する方法
近年、海外だけではなく日本市場でもAI(人工知能)の活用が注目を集めています。しかし活用が求められる領域でも、十分に導入が進んでいるとはいえません。AIは、データをもとに絶え間なく作業することが可能です。一定のクオリティを維持しつつ、連続的に稼働できます。 中でも「製造業」はAIとの親和性が高く、活用が求められている領域です。製造業におけるAIを活用した事例は、決して多くはありません。導入にあたって、知識や予算がないことから躊躇している企業もみられます。しかし、日本における製造業の市場を拡大し企業を発展させるにはAIの活用が重要な要素です。 製造業におけるAIの活用を推進すれば、市場や企業の売上を伸ばすだけではなく従業員の負担を軽減することも期待できるでしょう。そこで本記事では、AIを活用した製造業におけるDX(Digital TransFormation)の進め方やDX化のメリットなどについて解説します。
-
生産管理の将来性は? DX・AIを活用できるかが肝
製造業における生産管理といえば、自社製品の製造・原価・品質に大きな影響を及ぼす重要な職務です。 近年では、システムやAIの導入により生産性を大きく向上させる企業が増えています。 生産管理におけるDX(デジタルトランスフォーメーション)の推進は、人員の確保や次世代への技術継承に悩む企業の解決策となりつつあります。 本記事では、AIが生産管理という仕事にもたらしている変化や、生産管理職の将来像についてご紹介します。
-
AIの生産管理への活用方法とは?実例とともに解説!
近年は少子高齢化による就労人口の低下により、多くの産業において、付加価値や生産性の向上、業務効率化といった課題が明確になってきております。特に製造業界では、労働力不足が深刻化しています。 過去にはこれらの課題を解決するための有効な手法としてIT化が推進されてきました。最近では、さらにAI・人工知能を導入する企業も散見されています。特に、製造業をはじめとした生産管理において、AIを活用する企業は年々増加しています。生産管理の分野において、AIを活用し生産性向上を目指しています。 本記事では、生産管理の場面で、具体的にどのようにAIを活用していくのか、そのメリット・方法・事例も含めてご紹介をさせていただきます。
-
Excelを使った在庫管理のやり方、表の作り方、使える関数をご紹介!
企業の活動において、消費者であるユーザーが欲しがる商品を、欲しいタイミングで、欲しい分だけ適切に提供できることが、企業が目指すひとつの理想の形ではないでしょうか。 実際、「適正な在庫水準とは何か?」という問いにパーフェクトに答えるのは難しいとはいえ、ある程度の健全な在庫水準を保ち、欠品を防止に務めるのは、およそ商品を扱う企業にとっては共通の使命ともいえるのでしょう。 適性な在庫水準を保つために必要となるのが在庫管理表です。 実際に、紙での在庫管理をしていることも少なくないと思いますが、扱う商品などのアイテム数が多い場合、紙の在庫管理表では管理しきれなくなる可能性も出てきます。そこで便利でかつ的確な在庫管理を可能にするのが、Excelです。 本記事では、Excelを活用した在庫管理の方法について、在庫管理のやり方、表の作り方、使える関数をまとめてご紹介します!
-
AIを活用して簡単に「時系列予測」ができる!メリット、やり方を紹介
企業活動を円滑に行うには「今後の予測をいかに正確に立てることができるか」にかかっているといっても過言ではありません。特に食品・飲料など売上に季節要素が高い業界の活用は必須と言えるでしょう。 そのために、季節・トレンドなどの時間的変化を考慮しながら「時系列予測」を立てる必要があります。 この記事では「時系列予測」を行うメリット、やり方、AIを使った便利なデータ分析方法について紹介します。
-
AIを活用した在庫管理とは?メリットや導入方法、事例を紹介
在庫管理を行う場合、次のような課題を抱えている企業は多いのではないでしょうか。 ・担当者の知識や経験によって管理品質にバラツキがある ・データ入力や作業のミスが起こりやすい ・正確な需要予測ができずに在庫不足、在庫余剰が発生する こうした課題も、AIを活用した在庫管理を導入することで解決できます。 この記事ではAIを活用した在庫管理のメリットや、導入方法、実際に導入している業界の事例などをご紹介します。
-
売上予測にAIを活用するメリット7点!やり方・導入事例を紹介
「AI」を使って売上予測ができることをご存じですか?在庫を抱える小売業にとって、売上予測を正確に行うことは大きな課題です。なぜなら多くの在庫を抱えることは経営にとって大きなリスクとなるからです。大量に仕入れた在庫の多くが売れ残ってしまった場合、企業は大きな損害を被ります。その誤差をできるだけ少なくする技術として、注目を集めているのがAIによる売上予測です。この記事では、売上予測にAIを活用した場合のメリット、やり方、導入事例などについて紹介します。
-
AI・機械学習で必ず必要なデータの前処理とは?簡単にできる加工方法をご紹介
業務効率化や売上拡大のため、ビジネスでのAI活用が進んでいます。 ですが、AI活用に「データ前処理」が重要であることはあまり知られていません。 データ前処理は、AI実装までの作業工程の8割を占めるとも言われるほど重要な工程です。 本記事では、AIにおけるデータ前処理とは何なのか、具体的なデータの前処理方法を解説していきます。
-
売上最大化のための在庫予測
近年、小売業や通販業界で問題になっている在庫管理の課題を、AIを活用した在庫予測の手法を用いて、解決に導きます。 AIを活用した在庫予測は、従来の需要予測より精度が高く、信頼性の高い予測を実現でき、適切な在庫予測による売上最大化が見込めるようになるメリットがあります。