時系列予測でコールセンターの業務効率化
コールセンターの業務効率化を、AIを活用した時系列予測を用いて、解決します。 日々の入電(問い合わせ)数から対応するオペレーター数を適切に配置することで、コストの削減と業務の効率化に繋がります。

-
コールセンターの業務効率化には、人員配置の最適化が必要
コールセンターは人手不足が大きな問題となっており、入電に対して対応できる数も限られていることから、業務の効率化を検討するうえで、最も考えるべきことは人員の最適な配置です。
そのためには、オペレーターのシフト調整や労働時間管理など人的リソースの有効活用が重要です。 -
AIによる時系列予測で最適な人員配置を実現する
AIを活用して、入電が多い時間帯を時系列予測することで解決できます。
時系列解析とは、時間の経過に伴い変化するデータを分析することです。
例えば、日によって変化する株価、気温の遷移や降水状況などの気象観測などのデータを分析できます。この時系列予測を、AIを活用することで、より高い精度で実現することができます。
・既存の手法による時系列予測よりも、精度が高く、データに基づいた信頼性の高い予測
・大量のデータを用いた精度の高い予測時系列予測の精度を高めることで、時間ごとの入電数の予測が正確に行えるようになり、コールセンターでのなかな繋がらないというような不満解消を解消することで顧客満足度の向上、また入電数によってオペレーターの配置を調整することでコスト削減に繋がります。
-
MatrixFlowで時系列予測を行う方法
MatrixFlowはAIを素早く簡単に作成することができる、AI活用プラットフォームです。
MatrixFlowで時系列予測AIを作成することで以下のような結果を得ることができます。従来の手法による時系列予測よりも、精度が高く信頼性の高い予測を、ボタンをクリックしていくだけでスピーディに実現することができます。
以下のチュートリアルでは、上の図のような結果を得ることができるAIの作成手法、時系列解析の使い方を説明しています。
ぜひ一度操作いただき、MatrixFlowで時系列予測を素早く実施できることをお確かめください。 -
AIによる時系列予測で最適な人員配置を行い、業務を効率化しましょう
AIを活用することで、精度の高い時系列予測を行い、コールセンター業務の効率化を解決する手法についてご紹介しました。
MatrixFlowでは、時系列予測AIを素早く簡単に作成することができます。
また、MatrixFlowでは、インバウンドのお問合せの多い時間帯などだけでなく、アウトバウンドの架電の繋がりやすい時間帯や、成約数の多い時期など、項目や時間軸の設定を変えるだけでさまざまな課題も解決することができます。MatrixFlowに関するご質問や、ご自身の持つ課題を解決することができるのか?といったご質問・ご相談がありましたら、右のお問い合わせ欄からお問い合わせください。
関連した事例
-
ノーコードでAIを開発する方法とは?開発事例・無料の開発プラットフォームを紹介
ここ数年、国内外の開発者の間で「ノーコード(NoCode)」という言葉がよく聞かれます。 ノーコードとは、文字通りコードいらずでWebサイトやWebサービスを開発する手法のことです。 このノーコードの開発手法を使って、AI(人工知能)を開発しようとする動きが出てきています。 本記事では、ノーコードでAIを開発して自社課題を解決したい方に向けて、ノーコードでどんなことができるのかを解説していきます。 ノーコードを使ってAIを開発した事例も紹介しているので、ぜひ参考にしてみてください。
-
プログラミングでAIを開発する方法!必須のプログラミング言語・入門知識を解説
近年急速に進化しているAI(人工知能)。 AIを活用すれば、今まで大量の人と時間を投下していた業務も効率よく精度高く遂行できます。 人と同じような動きができるためすごい存在に思えるAIですが、プログラミングを学べば初心者でも開発が可能です。 本記事では、プログラミングをしてAIを開発する方法やAI開発におすすめのプログラミング言語をご紹介します。
-
機械学習(ML)とは? メリット・種類・業界や課題別の活用例・実施方法を解説
機械学習(Machine Learning)とは、コンピューター(Machine)が与えられた大量のデータを処理・分析することでルールやパターンを発見する技術・手法のことです。学習の結果明らかになったルール・パターンを現状に当てはめることで、精度の高い将来予測が可能となります。 高度なコンピューターを使用することで、人間の脳では処理しきれない複雑な要素を加味した分析・学習が可能となりました。その結果、近年ではさまざまな領域において人間による作業の精度向上・効率化に役立てられています。自動運転や医療、人間の購買行動の分析など、さまざまなビジネス領域で機械学習が実用化されており、今後のマーケットで生き残っていくためには必須の技術になりつつあるといえるでしょう。 本記事では、機械学習(ML)の概要やメリット、種類に加え、業種別・課題別の活用例を紹介します。実際に取り入れる際の作業フローも紹介しているので、機械学習の活用に興味がある方はぜひ参考にしてみてください。
-
データドリブン経営とは?成功事例からわかる必要性・メリット解説
ビジネスでデータを活用するのは、今やどの企業も当たり前に行なっています。 ですが、データを効果的に活用できている企業はあまり多くありません。 データを部分的にしか活用できていない、人によってデータ活用のレベルが異なる企業が多いのではないでしょうか。反対に、データを活用しようと意気込んで収集した結果、膨大なデータを持て余している場合も見受けられます。 このように、データを有効活用できていないと感じる方々に知っていただきたいのが、「データドリブン経営」という考え方です。本記事では、データドリブン経営とは何かを簡単に解説し、データドリブンで数字改善した成功事例をご紹介します。データを活用して売上を伸ばしたい、コスト改善したいと考えている方は、ぜひ参考にしてみてください。
-
AIやExcelを活用したコールセンターの入電数予測の方法
コールセンターにおけるコール予測(呼量予測、forecaster)とは、お客様からの問い合わせなどセンターで受信する電話の量を予測することをいいます。 コールセンターの運用コストを増加させる要因のうち大きなものが、コミュニケーターの人件費です。コミュニケーターは顧客からの入電に応じてオペレーションの対応をするため、実際の入電数よりも多くのコミュニケーターを配置すると、対応がなく待ち状態のコミュニケーターが増えて、不要な人件費の増加に繋がります。また、逆に配置人数が少ないと呼び出し中でつながらないなどのクレームの要因になりかねません。適正な人員をコンタクトセンターに配置することで、十分な顧客満足度が提供できる状態でオペレーションを行っていることが理想です。今回は、Excelを活用したコール予測、AI(人工知能)による機械学習を用いた時系列分析で、コール予測を実現する方法をご紹介します。
-
予測分析とは?活用事例とその手法・ツールをご紹介
予測分析とは、過去の行動パターンを特定し、将来の結果を予測するために、大量のデータに数理モデルを適用する手法です。 機械学習、データマイニング、統計アルゴリズムなどの複数の組み合わせがもたらす「予測的手法」により、予測分析ツールは、単純な相関付け以上の機能を実装できます。ビジネス分野では、予測分析が以下に示すようなさまざまな用途に利活用されています。 ・需要と供給のより正確な予測コンピューターネットワークに悪影響を及ぼす脅威と潜在的問題の特定 ・保険サービスや金融サービスにおけるセキュリティリスクの低減 ・クレジットカード詐欺のリアルタイム検出 予測分析機能を組み込んだソフトウェアが増えつつあり、これはあらゆる規模の組織体でユーザーにとって身近なものになっています。予測分析はデータサイエンスや高度な分析に関する訓練を受けていないエンドユーザーにも実務上の価値をもたらします。これは、まさにすべてのユーザーが恩恵を受ける機会を提供することに値します。この概念を「データの民主化」と呼びます。誰もがデータを利用してより良い意思決定を下せるように、組織全体でデータを誰もが利用できるようにするという概念です。 本記事では、予測分析がなぜ重要なのか、予測分析の実活用例、予測分析の手法、機械学習やデータマイニングなどの他のテクノロジーとの関係、モデルの役割、予測分析を始めるにあたってのヒントについてご紹介します。
-
ディープラーニング(深層学習)とは?概要や、業界・課題別の活用例・導入手法を解説
AI(人工知能)という言葉は昔からありましたが、近年いよいよ本格的に生活のなかで活用されるようになってきました。そのなかで重要な役割を果たしているのがディープラーニング(深層学習)です。従来は機械に任せるのが難しかったケースにも対応できるようになり、さまざまな形で日常生活やビジネスに変革をもたらしています。 しかし、ディープラーニングがどのような仕組みなのか、具体的に理解している方は少ないでしょう。本記事では、ディープラーニング(深層学習)の仕組みや、AI・機械学習との違い、さらに業種別のビジネスへの活用例を紹介します。 ディープラーニングを事業活動に活かしたいとお考えの経営者・事業担当者の方は、ぜひ参考にしてみてください。
-
異常検知とは?概要と業界別の実例、その実現方法をご紹介
近年、機械学習を用いた異常検知システムの開発がさかんになってきています。 日本の製造業は、従来より世界的に見てもとりわけ優秀ですが、現在は少子高齢化による後継者不足などの課題に直面しているのが現状です。 このような国家の危機的状況ともいえる大きな課題を解消するために、機械学習による異常検知システムが脚光を浴びています。 異常とは、通常と異なる振る舞いをすることで、日常生活においても、安定していた株価が急変したり、動きを保っていた機械が急におかしな動きをしだしたり、アカウントごとの投稿が一定量だったSNSの投稿量が激増した(炎上)など、「いつもと違う」ことに気が付く急激な変化は、私たちの身の回りでもよく起こっています。 今回の記事では、製造業や金融業などで活用されている、機械学習における異常検知の手法やアルゴリズムなどをご紹介します。機械学習を用いた異常検知による自動化を検討している方は、ぜひご活用ください。
-
マーケティングへの機械学習の適用方法・事例をご紹介
近年は機械学習(Machine Learning:ML)が大きな進化を遂げており、マーケティング分野にも数多く利用されています。Webサイト上のチャットボットによる顧客対応や、自動で最適な広告枠を入札するプログラマティックバイイングなど、従来は人手で行なっていた作業や、人では対応しきれなかった領域に機械学習が活用されているのです。 また、日常生活においてもほとんどのスマートフォンには音声アシスタント機能が搭載されています。文字を入力せず音声認識によって調べものをする人も増えており、今後はAI音声アシスタントがマーケティングに直結してくる可能性は高いでしょう。 AIや機械学習のマーケットは飛躍的な成長を遂げており、生活や仕事において活躍する機会が増えています。つまり今後のマーケティングにおいては、機械学習をいかに活用できるかが大きなカギを握ります。 本記事では、機械学習をマーケティングに適用する方法や実際の活用事例を紹介します。今後マーケターの仕事がどのように変化していくのか、押さえておきたい方はぜひ参考にしてみてください。