金融機関はAIをどのように扱えるのか?実例とともに紹介
業務効率化やセキュリティ強化の面で活躍している、金融機関のAI。本記事ではこの金融機関におけるAIの導入メリットを2つ紹介します。また記事後半ではさまざまな銀行の多種多様なAI導入事例も解説します。それぞれの銀行が全く異なったAIを導入しているため、非常に興味深いです。

-
金融機関にAIを導入するメリット
金融機関にAIが導入されると、どのような効果が期待できるのでしょうか。
そこで本章では、金融機関にAIを導入するメリットを2つ紹介します。
業務が効率化される
AIが導入されると業務が効率化されます。例えば今までは顧客が企業に問い合わせる際、コールセンターに電話をかけるしか手段がありませんでした。しかしチャットボットと呼ばれる自動で会話をしてくれるAIが導入されたことにより、簡単な問い合わせはAIが担当してくれるようになりました。これにより企業はコールセンターの人員を減らせるようになったため、人件費が削減できるのです。
実際のチャットボットの導入事例に関しては次章の「金融機関でのAIの導入領域・事例7選」でも少し触れているため、気になった方は是非ご覧ください。このようにAIが導入されることで、業務が効率化され人員を割く必要がなくなれば、人件費も削減できるのです。
セキュリティが強化される
銀行はお金を扱うため、特にセキュリティ対策には重きをおかなければいけません。不正取引や標的型攻撃は最近では大きな問題になっています。ただこのセキュリティ面でもAIは活躍し始めているのです。
実際に不正取引検知システムと呼ばれるAIを開発し、導入している企業もあります。ちなみに、これまで人間が気づかなかった不正も検知できるほど性能は高いようです。
-
金融機関でのAIの導入領域・事例7選
業務の効率化や、セキュリティ強化の面において一役を買っているAIですが、具体的にはどういった領域において活躍しているのでしょうか。本章では金融機関での、AIの導入領域・事例を7つ紹介します。
AIを活用した個人向け株式提案サービス
3大メガバンクの1つは、AIを活用した個人向け株式提案サービスの提供を2019年から開始しました。デジタル化によって、ユーザー自身が情報を収集して、株式投資を行う機会が増えてきた昨今。ただ株式投資はハイレベルな情報分析を求められることもあるため、資産運用を始めたばかりの方にとっては、様々な障害が存在するのが事実です。
そこで本銀行は、個人向け株式提案サービスの提供に踏み切りました。
本サービスの特徴は以下の通りです。・AIによる銘柄スコア予測:ディープラーニングで学習させた株価予測AIによって、期待収益性がスコア化される
・AIによる個別株式ポートフォリオ提案:ユーザーの保有株式やリスク許容度、資金に合わせてポートフォリオを提示してくれるとくに2つ目の機能の「AIによる個別株式ポートフォリオ提案」を、個人のユーザー向けに提供するのは日本初の試みのようです。
参照:【三井住友フィナンシャルグループ】日本初、AI(人工知能)を活用した個人向け株式提案サービスの提供開始(1/5)
顔認証技術などの新技術を搭載した新型ATM
大手流通企業グループ傘下の銀行は、AI新技術を搭載して社会とユーザーニーズに対応した、新型のATMを2019年から導入し始めました。本ATMの特徴は以下の通りです。
・顔認証による本人確認やバーコード読み取りが可能
・各種部品の故障予測により、運営が効率化
・AIを活用した現金需要予測の精度アップにより、ATMの休止を低減
・ 警備会社のスマートフォンを電子鍵として利用できるようになったため、ATMの鍵の管理が楽に
・金融犯罪行為を自動で察知することで、トラブルがあった際は24時間監視を行うコールセンターに通知我々が常日頃当たり前のように利用しているATMも、AIによって日々進化しています。
参照: 社会とお客さまのニーズの変化に対応した 第4世代ATM(セブン銀行中間ディスクロージャー誌2019)
ネット住宅ローンの事前診断システム
3大メガバンクの1つは、ネット住宅ローンの事前診断をAIで実施できるシステムを導入し始めました。このAI事前診断システムが導入されたことによるメリットは、以下の3つです。
・従来の事前審査では数時間かかっていた借入の判断が、最大1分で診断できるようになった
・従来の人による審査と精度はほとんど変わらない
・見直すべき項目を抽出してくれるため、借入の可能性が低くても適切に計画を再検討できる精度は変わらないにもかかわらず、診断結果がスピーディーになりました。
参照:AI事前診断(ネット住宅ローン事前診断) | みずほ銀行
資産運用ロボット
東京都中央区に本店を置く、SBIホールディングス傘下の普通銀行は資産運用ロボットの運用を始めています。ユーザーが金融資産額や年齢などの基本的な質問に答えるだけで、世界の約6,000の上場投資信託の中から最適と思われる組み合わせを提案してくれるのです。
これまでの資産運用では、リスクと期待リターンからポートフォリオを決定するのが一般的でした。しかしこのロボットアドバイザーは、3つの機能ポートフォリオを用意して、ユーザーの資産運用に対する目的に沿って、これらをうまく組み合わせて、最適なポートフォリオを作ってくれます。
またロボットアドバイザーは取引によって得られた追加入金や配当金、利益などの全ての状況を毎日モニタリングしています。そのためポートフォリオに次に組み込むべき銘柄が買えるタイミングで、自動的に購入してくれるのです。このシステムにより、常に複利効果での長期運用を実現してくれます。
月々1万円の積立からまとまった資金での一括運用まで取り扱っているため、幅広い方がご利用いただけます。
コールセンター業務の効率化
千代田区大手町に本社を置く普通銀行は、2020年秋に全国のコールセンター約350席にAI を導入しました。従来はマニュアルに基づいて顧客に対応していましたが、オペレーターの処理時間と、対応品質が課題になっていました。そこで本システムがオペレーターの業務品質向上と処理時間の短縮のために、導入されたのです。
またこれと同時に、マネージャーの管理業務効率向上も期待して導入に踏み切りました。それぞれの課題に対する対策は以下の通りです。
・オペレーターの業務品質向上: 通話内容をリアルタイムで文字化して画面に表示することで、聞き漏らしを防止
・オペレーターの処理時間の短縮: 問い合わせに関するFAQを自動検索することで、経験の浅いオペレーターの業務をお手伝い
・マネージャーの管理業務効率向上:通話内容のテキスト化機能によって、複数のオペレーターを監視できるようになったちなみに2018年10〜12月に実施した実証実験では、FAQ検索と音声認識により、まだ業務に慣れていないオペレーターの対応品質の高まりと、処理時間の3割軽減が実現したようです。
参照:ゆうちょ銀行、コールセンター業務の効率を高めるためにAI導入へ(デジタルクロス)
AI不正・リスク検知サービス
2020年7月、コンコルディア・フィナンシャルグループ傘下の地方銀行は、不正・リスク検知サービスを導入することを明らかにしました。
デジタル技術を用いた金融サービスが数多く創出されているなか、金融犯罪はより複雑そして巧妙になってきています。そこで本銀行は膨大な情報の中から不正や金融犯罪を、詳細かつ効率的に審査・検知するために本サービスを導入することを決めました。
もともと本銀行では属性・取引・口座の各種条件にもとづいた検知ルールを利用して、調査が必要な口座を洗い出していました。ただこのサービスは一次調査をAIが行ってスコア化してくれるため、詳細調査対象になる口座数を減少させることができるようになったのです。
ちなみに2019年5月から2020年1月までに行われた実証実験では、詳細調査の対象となる口座数を従来比で30〜40%減らすことができたようです。
またこの他にも、本サービスでは人間が検知することが難しい口座の動きもAIが認識してくれるため、リスクの高い口座を予兆的に認識した事例もありました。この性能は特殊詐欺やマネーロンダリングなどの、金融犯罪の未然防止にも役立つといわれています。
参照:NEC、横浜銀行に「AI不正・リスク検知サービス」を提供
対話型自動応答サービス「AIチャットボット」
京都府内を中心に営業している地方銀行は、AIが自動でユーザーからの質問に対応してくれるAIチャットボットを2021年4月から一部で導入し始めました。
これによりユーザーは営業時間にかかわらず、パソコンやスマートフォンで不明点を質問できるようになりました。またAIチャットボットは24時間365日すぐに質問に回答してくれるため、質問時間の制限がなくなっただけでなく、問い合わせの利便性も向上しました。
紛失時の手続きや年金など、銀行への疑問点は何かと多いため、時間を気にせずに相談できるようになった点は利用者にとっても嬉しいですね。
-
プログラミング不要でAIが構築できる「MatrixFlow」
MatrixFlowはプログラミングの知識がない方でもAIを構築できるプラットフォームです。
本ツールを利用すれば作成したアルゴリズムやデータの管理など、管理AI構築に関わるすべての工程を一元的に管理できるようになります。
またアルゴリズムの開発は、処理単位のブロックをドラッグアンドドロップして、繋げることで簡単に実現します。なお、この開発スキームは、業界や職種によらないものである上に、開発を続けることで開発ノウハウがブロックされるだけでなく、その組み合わせのテンプレートとしてプラットフォーム上に次々と蓄積されていきます。そのため今後のAI開発においては、より一層の開発費用の低減や開発の早期化が期待されます。
なおMatrixFlowは銀行業界においても、AIを構築できます。チュートリアルも用意しているため、気になった方はぜひご利用ください。また詳細のお問い合わせもお待ちしております。
-
ビジネスのためのAI活用プラットフォームMatrixFlowについての詳細はこちら
MatrixFlowの製品情報ページ -
AI活用・導入の実現方法についてのご質問ご相談はこちら
お問い合わせ
関連した事例
-
自動車部品 業界におけるAI活用事例7選をご紹介
品質向上や業務効率化の面において、とくに活躍している自動車部品業界のAI。本記事はこの自動車部品業界のAI活用事例を7つ紹介します。中には検査不備がゼロになったり、生産効率が4倍以上になったりといった大きな効果を享受している企業もあります。 また、それぞれの企業が全く異なるシステムを導入しているため非常に興味深いです。
-
介護業界でのAI活用事例、メリットをご紹介
出生率の低下、医療技術の発展を背景に、日本の少子高齢化問題は深刻化しています。その受け皿である介護業界は、今後ますますニーズが高まっていくといえるでしょう。しかし、ケアを行う介護スタッフが不足し「介護難民」という言葉が生まれるなど問題化しています。 そうしたスタッフの業務負担を解消し、効率化を推進するために、近年AIというテクノロジーに注目が集まっています。一見、介護とAIに関連はないように思われますが、現場ではAIを活用した試みがスタートしています。 例えば、ケアマネジャーが行っていたケアプランの作成をサポートするなど、今まで担当者が抱え込んでいた作業をAIが肩代わりすることなどがあげられます。 この記事では、介護業界におけるAIの活用方法、その具体的な導入事例について紹介します。
-
AIを活用した在庫管理の改善事例、11選をご紹介
在庫管理を目視で行うことは、ミスの誘発や人件費の増大に繋がります。効率よく在庫管理を行うためにAIを導入し、成功につなげた各社の事例を紹介します。今後のAI導入の参考にしてください。
-
AIの小売業界への適用方法、事例をご紹介
小売業界においては、属人化した仕事が多く、その効率化が課題になっています。「業務の進め方が、その人にしかわからない状態」では、効率化しようにもできません。自分なりの商談スタイルを確立しているバイヤーなどが、その例として当てはまるでしょう。 こうした事態を脱するために、近年ではAIの活用が注目を集めています。 この記事では、小売業界にAIをどのように適用するかという方法、またAIの活用事例などについて紹介します。
-
AIの医療領域への活用事例、簡単なモデルの作り方をご紹介
自動翻訳やお掃除ロボットなど、AIはわたしたちの生活の一部になりつつあります。 AIの活用領域は年々広がってきており、近年は医療分野での活用も進んでいます。 かなり繊細で高度な技術が要求される分野のため、どこにAIが活用できるのかイメージできない方も多いかもしれません。 実は、診察データの収集・分析から新薬開発まで、AIでできることは無限大にあるのです。 本記事では、医療分野でAIがどのような役割を担っているのか、実際の導入事例を元に解説します。 また、AIを活用するメリット・デメリットもまとめているため、AIで医療の課題を解決したい方は参考にしてみてください。
-
需給計画、需給調整とは?AIを活用し製造・物流を効率化するシステムをご紹介
近年、小売業や通販業界で取り組むべき課題になっている最適なキャンペーン計画の策定について、AIを活用した需要予測の手法を用いて、解決に導きます。 AIを活用した需要予測は、従来の予測手法より精度が高く、信頼性の高い予測を実現できるため、最適なキャンペーン計画の策定ができるようになり、売上最大化が見込めるようになるというメリットがあります。
-
AIで業務効率化を行った実例14選
昨今ではさまざまな業界や分野においてAIが活躍し始めています。ただ実際にAIがどのように活躍しているか、具体的に把握していない方も多いのではないでしょうか。 そこで本記事では、AIの業務効率化事例14選を紹介します。人事や物流、問い合わせ対応など様々な分野の事例を解説するため、きっと自社で生かせる事例が見つかるはずです。
-
銀行業界におけるAI活用のメリット・事例
「現在の銀行業界が抱える問題に対してAIがどのように対処できるのか」 「AI活用のメリットや具体的な事例が知りたい」 こんな悩みを抱えていませんか? AIは専門的で難しそうに聞こえますが、この記事ではAIについて詳しくない方でも分かりやすいように上記の疑問を解決していきます。 近年、AIの導入によって、銀行サービスの内容や雇用が大きく変化しています。 実はその領域もスマートコントラクト、消費者金融、投資支援、銀行運営などと分野は多岐に広がっています。 こういった変化の中で、そもそもAIは銀行業界のどんな問題を解決するのか、既にどんな活用がされているのかについて解説していきます。 AI導入のメリットや実際の活用事例を知ることによって、これから銀行業界がどのように変化していくか掴めるようになるため、よりよいサービスの提供、最適なキャリア選択ができるようになります。 ぜひこの記事を参考にしてみてください。
-
AI予測モデルの簡単な作り方・評価方法を紹介
近年はAI技術の発展・企業でのDX化推進とともに、導入のハードルも下がり始めています。実際にさまざまな業種の企業が積極的にAIを活用し始めています。 AIはさまざまな分析や予測を得意としていますが、やみくもにAIを導入しても必ずしも高い精度で実現できるわけではありません。それはなぜでしょうか。実は「AIモデル(機械学習モデル)」の品質が、AIの精度そのものを左右するためです。 言い換えれば、より精度の高いAIを開発・導入する上では「AIモデル」が非常に重要な鍵を握っていると言えるでしょう。 今回は、AIモデルの簡単な作り方・評価方法などを詳しく紹介します。 ぜひ皆様のビジネスの参考にしてみてください。
-
AI予測とは - メリット・重要である理由・仕組みを紹介
近年、企業活動にAI予測などの技術を導入する動きが加速しています。少子高齢化による働き手の不足に対して、有効なアプローチであることからも注目を浴びているという背景があります。 IT技術の進歩によりAIが簡単に活用できるようになったこと、また人々のライフスタイルの多様化によるマーケティングのニーズなどから、企業のAI導入は進んでいます。また驚くべきことに、導入企業の約8割がその効果を実感しています。(※総務省「令和3年版 情報通信白書」より) AIは過去のデータを学習することで、精度の高い予測をすることが可能です。需要の変化を的確にキャッチすることができるため、経営判断にも活用されています。 今まで担当者・経営者の経験・勘などに頼っていた箇所を、AIに置き換えることができるようになります。 しかし、そのAIの特性(苦手なこと・得意なこと)を正しく理解しなければ、有効な活用は難しいと言えるでしょう。 この記事では、AI予測を効果的に活用するために押さえておくべきポイント、そのメリットなどを中心に紹介します。
-
サプライチェーン領域におけるAI活用例9選
サプライチェーンとは、商品がユーザーに届くまでの一連の流れのことをいいます。 具体的には、材料の調達から製造、配送、販売といった工程のことです。 サプライチェーンを管理する方法は、サプライチェーンマネジメント(SCM)と呼ばれます。 近年、サプライチェーンマネジメントにAIを導入することで、売上を最大化する動きが加速しています。 マッキンゼーの2018年のAI調査においても、約8割の会社がサプライチェーンへのAI導入にポジティブな効果を認めています。 サプライチェーンマネジメントでAIはどのように活用できるのか、導入事例を9つご紹介します。
-
AI技術の不正検知への適用方法、メリット・活用事例をご紹介
金融取引のデジタル化にともない、クレジットカード決済の不正取引をはじめ、企業の不正会計など、その手口は複雑化・巧妙化しています。 今やインターネット上での金銭のやりとりはビジネスに欠かせないものとなっており、その分不正利用や不正取引が行われるリスクは増加していると言えるでしょう。 不正を取り締まるためにモニタリング部門に人員を割く必要がありますが、それでは取引が増加するたびに人材を増員する必要がありますし、やみくもに人を増やしたところで不正検知の精度にも不安が残ります。 そこで近年、人の目によるチェックではなく、AIを活用してその不正を検知しよう、という動きが加速しています。特にクレジットカードの取引では、AIによる不正検知についての期待が高まっています。 この記事では、AIを活用した不正検知の導入メリット、注意点、導入事例などを紹介します。
-
機械学習のビジネスにおける活用事例を徹底解説
様々な分野・企業で、AIや機械学習の活用が進んでいます。 iPhoneのSiriやGoogleのアレクサなど、日常生活にも溶け込んでいるほどです。 AIにデータを機械学習させれば、膨大な時間がかかる作業も分析も一瞬で終えることができます。 AIは学習させるデータでどんな使い方もできるため、その可能性は無限大です。 本記事では、AIや機械学習をビジネスに活用する方法や、導入事例をご紹介します。
-
保険業界でのAIの活用領域、実例と導入に向けたポイント
保険金査定や問い合わせ対応の分野を中心に、最近では保険業界でもAIが活用され始めています。そこで本記事では保険業界におけるAIの活用領域や事例、導入の際のポイントを紹介します。 AIを導入すれば業務が効率化されたり、ニーズに適した商品を販売できるようになったりと、さまざまなメリットがあります。ぜひAIを導入して、こういったメリットを享受していきましょう。
-
不動産業におけるAI技術:AI活用領域と、事例をご紹介
不動産業界は他の業界に比べて、AIの進出が遅いといわれているため、今のうちに導入できれば多くのメリットを享受できるかもしれません。そこで本記事では不動産業界におけるAIの活用領域や、AI導入のメリット・デメリットを解説します。
-
効率化できる在庫管理の考え方と、AIを活用した最先端の在庫管理
製造業や小売業など、商品を扱う企業において重要なのが「在庫管理」です。適切な在庫管理ができていないと商品の需要変化に対応できず、売上機会の損失にもつながりかねません。そうはいっても、今さら管理方法を変えるのは遅すぎるかも...と思われる方もいるでしょう。在庫の管理方法を改善するのに遅すぎることはありません。今現在うまく在庫管理ができていない場合も、コツや事例を学べばいつからでも改善可能です。本記事では、在庫管理を効率化するための考え方について解説していきます。
-
需要予測は当たらない?AIで高い精度を実現する方法
企業が抱える在庫削減は、ビジネスにおける非常に重要な課題のひとつです。少ない在庫でも欠品を起こさないようにするためには、どのようにすればよいでしょうか? 答えは一言でいうと、将来の需要を正確に予測して、必要なときに必要なだけ生産すればよいのです。 しかし、新型コロナウイルスによる需要の激減を数年前から予測できた人はどれだけいたのでしょうか? また、来月発売される新製品の需要を完璧に予測することは可能でしょうか? 残念ながら「需要予測とは当たらないもの」と言っても過言ではありません。 今日、多くの企業がビジネスの現場で需要予測に取り組んでいます。 データを集計、加工、分析しレポートとして出力するシステムを導入したり、独自の予測モデルを作ったり、あるいは在庫担当者の長年の経験に頼ったり、方法はさまざまですがほとんどの企業が需要予測をさまざまな形で取り入れていると言ってよいでしょう。 長年多くの企業で取り組まれてきたにもかかわらず近年ますます需要予測の重要視されているのはなぜでしょうか? 本記事では、需要予測の基礎についておさらいし、需要予測を高い精度で実現する方法についてご紹介します。
-
建設・土木・ゼネコンにおけるAI技術:AI活用領域と、事例6選をご紹介
機械学習やディープラーニングの技術進化で、AIの活用・導入が一般的になりつつあるなか、AIとの親和性から、高いレベルで導入が進んでいる業種と、そうでない業種もあります。建設業界ではゼネコンをはじめ、さかんにAI投資が進められており、AIによる業務改善や品質向上など、建設現場へのプラスの効果が期待されています。 今回は、建設業界ならではの課題や今後の動向、実際の活用事例についてご紹介していきます。
-
AIを活用した需要予測による在庫最適化
ここ数年で、AIを活用して商品の需要を予測する動きが増えてきています。 AIを需要予測に使う目的は様々ですが、最も多いのは在庫の最適化です。 どの商品がどのくらい売れるのかをAIが予測できれば、最適な在庫数を保つことができます。 本記事では、AIを使った需要予測によってどう在庫が最適化されるのか、事例を交えて解説していきます。
-
生産管理と品質管理の違いとは?AIを活用した最先端の事例もご紹介
生産管理とはモノづくりの現場で行われる受注から納品までを含む業務のことです。一言で生産管理といっても、生産計画、受注管理、発注管理、在庫管理、製造管理、外注管理、進捗管理、品質管理までの工程が含まれます。 生産管理は三つの要素である「品質」「原価」「納期」が重要です。なぜなら、高い品質の商品を、できるだけ原価を安くし、短期間で作ることが企業の利益に深く結びついているからです。 この記事では生産管理と、その一工程である品質管理の関係性を整理しながら、AIを活用した事例についても紹介します。
-
面白いAI・人工知能の使われ方をまとめました
AI技術は日々刻々と進化しています。これに伴い需要を予測して食品ロスを減らすAIや、クレジットカードの不正を検知するAIなど最近は、さまざまなAIが登場し始めています。 そこで本記事では、AI活用事例の中でも一風変わった面白い事例を8つ紹介します。本記事をAI活用のアイデアの参考にしてみてください。
-
在庫管理を基礎から解説 - 手順・コツ・AIを活用した手法まで紹介
製造業や小売業において、在庫管理の成否は業績を大きく左右するポイントです。大型受注を取っても十分な在庫がなければ機会損失になり、逆に過剰な在庫があれば保管費や処分費用によって利益を圧迫するでしょう。 本記事では、企業にとって重要な在庫管理の基礎を解説します。手順やコツに加え、AIを活用した管理手法まで紹介するので、在庫管理に携わる企業担当者はぜひ参考にしてください。
-
無料で在庫管理を行う方法!在庫管理ツールと使い方をご紹介
在庫管理を正確に行うことは経営を行ううえで非常に重要です。在庫管理が正しく機能していないと、企業経営に大きなダメージを与えることになります。 しかし在庫管理を手作業で行う場合、その成果を担当者の経験やスキルに依存してしまうことが多く、属人化しがちな業務です。作業工数もかかってしまうため、ツールを用いてもっと簡単に在庫管理をしたいという人も多いのではないでしょうか。 とは言えいきなり有料のシステムを導入するのもハードルが高いため、まずは無料で使えるツールを導入したいですよね。この記事では、無料で在庫管理ができるツールとその使い方、それぞれのメリット・デメリットについて紹介します。
-
工場の生産管理におけるAIの活用法とは?
時間とコストを削減したり、不良品の発生を防いだりする際に役立つのが生産管理システム。最近ではこのシステムを利用して工場の生産管理をAI化する企業が増えています。そこで本記事では、生産管理における AI の活用方法と題して、生産管理システムの機能やメリットを紹介します。
-
AIを活用した採用予測 - 実例・方法をご紹介!
「苦労して採用した人が1ヶ月で辞めてしまった」 「求めているスキルと実際の働きぶりに差があった」 こうした悩みを持たない採用担当者は、いないといっても過言ではありません。 要件にマッチした人材の採用は、どの会社においても重要課題です。 採用のマッチング率向上への期待から、人材採用にAIを活用する動きが見られています。 AIを活用することで要件に合った人材採用ができるだけでなく、採用工数を大幅に削減できます。 どのように採用領域でAIを活用するのか、具体的な事例と共に解説していきます。
-
AIを活用した生産性向上の方法と実例をご紹介
AIを活用することで、労働力不足の解消や、働き方改革の推進が可能となり、生産性を向上できることをご存知ですか。AIの導入で成功するためには、なぜAIを使うのか、実際にどんなデータを用いれば課題が解決できるのかを明確にすることが大切です。この記事では、ビジネスの現場で、AI活用が進んでいる背景やAI技術を活用するメリット、活用事例について解説します。また、AIを導入する際のポイントも紹介しますので、ぜひ参考にしてください。 目次 AI導入が広がる理由とは? AI導入による、生産性向上事例9選 MatrixFlowを活用したAI導入 AIを活用した生産性向上の方法と実例:まとめ
-
MESとは?生産管理のDXに欠かせない、MES・AIを導入する8つのメリット
従来の「ものづくり」は、一般的に「売れるモノ」の見込みを立てて、大量生産を行っていました。しかし、近年はニーズの多様化により製品のライフサイクルは短期化しており、少量多品種生産へとトレンドが移行しています。 つまり工場の設備は同じままで、多種多様な製品を生産しなければならない必要性に迫られています。そのためにも、生産管理のDX化は必要と言えるでしょう。そこで注目を集めている「MES」の導入について説明します。
-
AIを活用した製造管理とは? 製造業のDX推進の方法と事例紹介
製造業において、製造管理にはどのような役割があり、なぜ重要なのでしょうか?生産管理と同義に捉えられることが多いですが、管理の目的や範囲にはそれぞれ違いがあります。製造管理の役割や意義を的確に把握したうえで、業務にあたることが大切です。 今回は、生産管理とも比較しながら製造管理の役割を明らかにしたうえで、その必要性やメリットを解説します。さらに、現代の製造業において需要が高まっているAI活用についても、製造管理の現場にもたらす効果や導入事例を紹介するので、ぜひ参考にしてみてください。
-
アパレルの生産管理におけるAIの活用方法 - 需要予測・検査・検品
アパレル業界における生産管理には効率化が求められます。生産量や販売時期の予測から始まり、納品までの一連の流れには多くの工程が存在するため、管理が大変です。 そこで、現状の課題から、アパレル業界における生産管理の基礎知識を合わせて解説します。どうすればアパレル向けの生産管理システムを効率化できるのかも紹介します。
-
AI導入の失敗例と、成功のポイントとは?
AI導入の失敗はよくあること。「AIはすごいらしい」という時期は過ぎ、AIを導入する企業は確実に増加しています。日々の生活でもAIに遭遇することが増え、AI導入の検討段階に入ったという企業もあるでしょう。 今回は、AI導入の悪い事例を具体的に紹介します。失敗の原因を知り、自社の取り組みの際の参考にしてみてください。
-
データサイエンティストは消える?仕事がなくなるというのは本当?
データサイエンティストという職業をご存じでしょうか。スマホを手に生活をするスタイルに移行したことで、膨大なデータ(ビッグデータ)が日々生まれています。これらのデータを企業の課題解決に活かすことが、データサイエンティストの仕事と言えます。そのため、ビジネスとITどちらの世界にも精通することが求められます。 企業側の需要も高まり、高い年収も見込まれるようになりました。そのため、データサイエンティストを目指す学生・ビジネスマンが増える傾向にあります。 一方で、データを扱うという業務から「将来的にAIに取って代わられて、データサイエンティストは消えるのではないか?」という議論も生まれています。 その観点から、データサイエンティストの仕事内容、将来性、重要性、また最新のAIの動向も含めて紹介していきます。
-
AI・機械学習による需要予測のメリットは?高い予測精度を実現する方法を解説
昨今、多くの企業で『需要予測』が注目されています。目まぐるしく変わる社会の変化に合わせて、無駄なく製品の提供するには需要予測が欠かせません。 需要予測の目的は、「消費者が製品を必要とするタイミングや量を予測し、適切に供給する」ことにあります。 精度の高い需要予測を実現することで、人・物・コストの流れを最適化することができ、企業によっては数億円のインパクトになることもあるでしょう。 これまで、需要予測はベテラン従業員のKDD(*1)に頼る傾向がありました。近年では「AI」「機械学習」などを活用した新しい手法も身近になりました。 本記事で『需要予測』について、そのメリットや最新のAI・機械学習を活用方法について解説していきます。 (*1) KKDとは日本語の「経験」(KEIKEN)、「勘」(KAN)、「度胸」(DOKYOU)の頭文字を取ってできた言葉で、製造業を中心に職人の技として尊重されてきた手法です。
-
AIによる需要予測に必要なデータの種類とは?集め方についても紹介
人々がスマホを片手に生活するようになり、SNSへの投稿が活発になるなどして、企業は様々なデータを取得できるようになりました。 そうしたデータを需要予測をはじめとしたビジネスシーンに活用しようという動きが強まっています。 需要予測とは、市場において「会社の商品やサービスがどれくらい売れるか」「在庫がどれくらい必要になるのか」などを、予測することです。 この記事では、その需要予測を行うにあたり、どのようなデータが必要となるのかについて説明します。 また膨大な量となるビッグデータを扱うに当たって、欠かせないAIについての活用についても触れていきます。
-
データサイエンティストには簡単になれるのか?今後求められる視点を解説
近年注目されているデータサイエンティストという職種。そもそもデータサイエンティストとはビッグデータから必要な情報を抽出して、企業の問題解決をしていく職業です。本記事ではデータサイエンティストになるための方法や将来性、今後求められる視点を中心に紹介します。
-
生産計画をエクセルで行う場合の、メリットやデメリットを解説
生産計画を策定する際には、原材料調達から出荷までを円滑に行うため、全体を見渡した設計が必要になります。生産計画に落ち度があれば、原価アップや品質の悪化、納期遅れなどにつながるため、会社の業績を左右する重要な役割です。 中小規模の製造業であれば、エクセルで生産計画を作成しているケースは多いでしょう。エクセルは生産計画以外でも業務に使用する頻度が高く、多くのビジネスパーソンにとって使い慣れたツールです。 エクセルの機能を使いこなせれば、生産計画を作成・管理する効率も格段に向上させることが可能です。しかし、エクセルで生産管理を行うことにデメリットはないのでしょうか。 本記事では、生産計画をエクセルで作成・管理することのメリット・デメリットを徹底解説します。また、エクセル以外の専用ツールを導入する価値についても紹介するので、ぜひ参考にしてみてください。
-
AIを実業務に活かす方法 - 実例とともにご紹介
「AIって何ができるの?」 「ビジネスに転用できるの?」 このような疑問を抱いている方も多いのではないでしょうか。近年では企業の採用業務の負担を軽減したり、物流の需要予測を行って、業務を効率化してくれたりするAIなど様々なシステムが登場しています。 そこで本記事ではAIを活かすことができる業務や活用事例、AIを導入する前に確認しておくべきポイントを紹介します。
-
製造業におけるDXとは?AIを使いこなしDXを実現する方法
近年、海外だけではなく日本市場でもAI(人工知能)の活用が注目を集めています。しかし活用が求められる領域でも、十分に導入が進んでいるとはいえません。AIは、データをもとに絶え間なく作業することが可能です。一定のクオリティを維持しつつ、連続的に稼働できます。 中でも「製造業」はAIとの親和性が高く、活用が求められている領域です。製造業におけるAIを活用した事例は、決して多くはありません。導入にあたって、知識や予算がないことから躊躇している企業もみられます。しかし、日本における製造業の市場を拡大し企業を発展させるにはAIの活用が重要な要素です。 製造業におけるAIの活用を推進すれば、市場や企業の売上を伸ばすだけではなく従業員の負担を軽減することも期待できるでしょう。そこで本記事では、AIを活用した製造業におけるDX(Digital TransFormation)の進め方やDX化のメリットなどについて解説します。
-
AIの生産管理への活用方法とは?実例とともに解説!
近年は少子高齢化による就労人口の低下により、多くの産業において、付加価値や生産性の向上、業務効率化といった課題が明確になってきております。特に製造業界では、労働力不足が深刻化しています。 過去にはこれらの課題を解決するための有効な手法としてIT化が推進されてきました。最近では、さらにAI・人工知能を導入する企業も散見されています。特に、製造業をはじめとした生産管理において、AIを活用する企業は年々増加しています。生産管理の分野において、AIを活用し生産性向上を目指しています。 本記事では、生産管理の場面で、具体的にどのようにAIを活用していくのか、そのメリット・方法・事例も含めてご紹介をさせていただきます。
-
Excelを使った在庫管理のやり方、表の作り方、使える関数をご紹介!
企業の活動において、消費者であるユーザーが欲しがる商品を、欲しいタイミングで、欲しい分だけ適切に提供できることが、企業が目指すひとつの理想の形ではないでしょうか。 実際、「適正な在庫水準とは何か?」という問いにパーフェクトに答えるのは難しいとはいえ、ある程度の健全な在庫水準を保ち、欠品を防止に務めるのは、およそ商品を扱う企業にとっては共通の使命ともいえるのでしょう。 適性な在庫水準を保つために必要となるのが在庫管理表です。 実際に、紙での在庫管理をしていることも少なくないと思いますが、扱う商品などのアイテム数が多い場合、紙の在庫管理表では管理しきれなくなる可能性も出てきます。そこで便利でかつ的確な在庫管理を可能にするのが、Excelです。 本記事では、Excelを活用した在庫管理の方法について、在庫管理のやり方、表の作り方、使える関数をまとめてご紹介します!
-
テキストマイニングやり方入門編、実活用例をご紹介
アンケートやSNS投稿などの膨大なデータから、顧客ニーズの把握や将来の予測ができるということで、近年注目されているテキストマイニング。本記事では、そのテキストマイニングの概要や活用事例、やり方を紹介します。
-
AIを活用した在庫管理とは?メリットや導入方法、事例を紹介
在庫管理を行う場合、次のような課題を抱えている企業は多いのではないでしょうか。 ・担当者の知識や経験によって管理品質にバラツキがある ・データ入力や作業のミスが起こりやすい ・正確な需要予測ができずに在庫不足、在庫余剰が発生する こうした課題も、AIを活用した在庫管理を導入することで解決できます。 この記事ではAIを活用した在庫管理のメリットや、導入方法、実際に導入している業界の事例などをご紹介します。
-
売上予測にAIを活用するメリット7点!やり方・導入事例を紹介
「AI」を使って売上予測ができることをご存じですか?在庫を抱える小売業にとって、売上予測を正確に行うことは大きな課題です。なぜなら多くの在庫を抱えることは経営にとって大きなリスクとなるからです。大量に仕入れた在庫の多くが売れ残ってしまった場合、企業は大きな損害を被ります。その誤差をできるだけ少なくする技術として、注目を集めているのがAIによる売上予測です。この記事では、売上予測にAIを活用した場合のメリット、やり方、導入事例などについて紹介します。
-
AI・機械学習で必ず必要なデータの前処理とは?簡単にできる加工方法をご紹介
業務効率化や売上拡大のため、ビジネスでのAI活用が進んでいます。 ですが、AI活用に「データ前処理」が重要であることはあまり知られていません。 データ前処理は、AI実装までの作業工程の8割を占めるとも言われるほど重要な工程です。 本記事では、AIにおけるデータ前処理とは何なのか、具体的なデータの前処理方法を解説していきます。
-
AI・機械学習を用いた画像分類とは?その方法、実活用例を徹底解説
AIや機械学習を活用した画像分類は広がりを見せています。最近では、次のような活用事例があります。 1. パン屋さんのレジ業務への画像認識AI活用 2. バスケットボールなどスポーツ関連への画像認識AI活用 3. 運送会社の安全運行や防災分野への画像認識AI活用 4. 電車やバスの改札・空港の認証ゲートでの画像認識AI活用 5. 音楽フェスなどイベントでの画像認識AI活用 6. 製鉄所における作業者の安全管理業務への画像認識AI活用 7. Eコマースサイトへの画像認識AI・検索技術への画像認識AI活用 8. マグロの検品業務への画像認識AI活用 9. ワイン検査業務への画像認識AI活用 AI・人工知能の技術が積極的に活用されている分野の一つに画像認識があります。画像認識は、画像(動画)データからパターンを認識して、その特徴から対象物を特定します。画像認識はディープラーニングにより精度が飛躍的に向上したため、現在、さまざまな業種・業界で導入が進んでいます。 本記事では、AI・人工知能・機械学習を活用した画像分類について概観し、その方法、実際の活用例について、AIを活用した画像分類のおすすめツールを紹介します。
-
製造業でのAIによる需要予測の活用事例
製造業ではビックデータを使ったAIによる需要予測を行うことにより作業の自動化が進み、人手不足問題の解消や生産ロスの解消にも貢献します。
-
時系列予測でコールセンターの業務効率化
コールセンターの業務効率化を、AIを活用した時系列予測を用いて、解決します。 日々の入電(問い合わせ)数から対応するオペレーター数を適切に配置することで、コストの削減と業務の効率化に繋がります。
-
SNSの投稿に含まれる感情をテキストマイニングで分析する
SNSの投稿から感情を分析するなどのマーケティングのための作業を、AIによるテキストマイニングで効率化します。 AIによるテキストマイニングは業務効率化を実現するだけでなく、分析結果を用いて、商品開発や広告・宣伝をすることができます。